This document outlines in detail the course structure, content and learning outcomes. More information is available at any time by contacting NeuroCapability on +61 73180 0622 or email admin@neurocapability.com.au

COURSE OUTLINE

This non-accredited program covers four key subject areas:

- Neuroscience of self regulation in the workplace.
- Neuroscience of problem solving and decision making.
- Neuroscience of collaboration and engagement.
- Neuroscience of facilitating sustainable change.

COURSE OUTCOMES

Facilitators draw on the latest research in Neuroscience, NeuroLeadership, Positive Psychology, Interpersonal neurobiology and neuroeconomics. The course supports students to learn about brain function and how to practically apply the insights emerging from these fields in the workplace. Students during the course are encouraged to explore and develop new ideas and strategies that enhance performance and build leadership capability.

On completion of the Neuroscience of Leadership participants can expect to:

- Have an understanding of the human brain, how it works and how to improve its performance
- Think better and perform better
- Understand how to self-regulate and stay cool under pressure
- Understand how to improve team collaboration, creativity, insight and engagement
- Understand how to support the development of sustainable change
- Acquire cutting-edge tools and strategies that support the delivery of exceptional results
SELF-PACED LESSONS
Throughout each Study Period, students are required to listen to 6 VILT videos. Each video will take approximately 45 mins – 1 hour to complete and can be viewed all at once or in manageable sections to cater for listener preferences. Weekly readings and a Learner Guide are provided each study period to support embedding of content.

ONLINE DISCUSSION FORUMS
Students are encouraged to contribute to 6 Discussion Forum questions throughout each Study Period. These forums provide students with an opportunity to share insights, questions, learning and resources with their peer group and course facilitator. Each of the Discussion Forum questions is linked to the corresponding VILT video and weekly content.

FORTNIGHTLY Q & A SESSIONS
Students are invited to join their course facilitator for highly interactive and engaging fortnightly Q & A sessions. These online sessions provide an active forum for sharing the practical ways students are applying their learning in their environments through discussion and guided group reflection.

ASSESSMENT (OPTIONAL)
To support embedding and deep understanding of content, students are provided the following for each study period which they can complete throughout the course. These are not mandatory assessments and they cannot be submitted for assessing. However, they can be used by students to gauge their understanding of content and raise any questions needing further clarification in the fortnightly Q & A sessions.

- Short answer questions
- Discussion Post forums
- Workplace project

COURSE STRUCTURE
Students begin by completing a stand-alone module, consisting of assigned readings, a 1 hour virtual instructor led training (VILT) video, and an optional short answer assessment. This module provides a foundation in neuroanatomy and neurophysiology and is a prerequisite for subsequent course content. The following four study periods each consist of six Big Ideas.
INTRODUCTORY MODULE

Upon completion of this topic, you will have an understanding of neuroanatomy and gain an insight into the neurophysiology of the brain. You will be able to:

- Recall and outline areas of the brain and understand the function of each lobe
- Describe and understand the limbic system
- Describe and understand the nervous system
- Describe how neuronal networks are formed in the brain and how information is transmitted
- Recall the major transmitters and the roles they play
- Understand neuroplasticity and the implications for our brains

UNDERSTAND AND SPECIFY BASIC NEUROANATOMY AND NEUROPHYSIOLOGY

This topic provides the background knowledge in relation to the neuroanatomy and neurophysiology that is required to engage in all other components of the Neuroscience of Leadership program.
THE NEUROSCIENCE OF SELF REGULATION IN THE WORKPLACE

This topic area focuses on exploring the biological process associated with arousal and in particular the areas of the brain involved in self regulation and what this means in the workplace. This includes exploring the brain’s key organising principle, and areas of the brain which play a role in self regulation. We will explore the concept of Attentional Intelligence (Ray 2009) and the application of brain friendly strategies required by leaders for regulating threat and reward responses in the intrapersonal and interpersonal contexts.

We will explore the concept of attentional intelligence and application of brain friendly strategies required by leaders for regulating threat and reward responses in the intrapersonal and interpersonal contexts.

6 BIG IDEAS WE EXPLORE:

- Threat and Reward - the key organising principle of the brain
- Managing Threat and Reward responses for self and others
- Domains of Threat and Reward Responses
- Developing your Attentional Intelligence – its all in the focus
- Neuroscience of Frazzle – managing fear and stress in the workplace
- Emotions are Contagious – managing emotion contagion

Upon completion of this module, you should be able to:

- Understand the key organising principle of the brain and identify the implications of this
- Recall and outline areas of the limbic system and understand the functions of each component
- Understand why feelings are not the same as emotions
- Understand and describe the role neurotransmitters play in self regulation
- Understand and recall the parts of the brain involved in self regulation
- Describe the processes that control and regulate emotions that impact on self regulation
- Manage threat and reward responses at an intrapersonal, interpersonal and team level in the workplace by identifying and selecting appropriate strategies for regulating emotions
- Analyse and review the impact of implementing self regulation strategies
THE NEUROSCIENCE OF SOLUTION FOCUSED DECISION MAKING

In this Study Period we introduce and explain the key areas of neuroanatomy and neurophysiology involved in problem solving and decision making. We will explore the knowledge and skills required to make ‘brain-friendly’ decisions and how to manage distraction. Throughout this module we will look at practical applications to lead effective decision making processes in the workplace at the intrapersonal, interpersonal and team level.

6 BIG IDEAS WE EXPLORE:

- Decision making and the brain – practical strategies for making ‘brain-friendly’ decisions
- Attention is a limited resource – managing attention and the neuroscience of distraction
- Role of memory in decision making – tapping into and reforming episodic memory
- Neuroscience of choice and information overload
- Neuroscience of Insight and how to have more of these
- Name that bias – cognitive bias in problem solving and decision making

Upon completion of this module, you should be able to:

- Identify the key areas of the brain involved in problem solving and decision making
- Understand the difference between conscious and unconscious thought
- Understand the complexity of the decision-making process and describe the processes that support brain-friendly decision making
- Understand the role and effect of memory in solution focused decision-making
- Cultivate and model strategies that support solution focused decision making at the intrapersonal level, when working with others or when leading a team
- Demonstrate awareness of the concept of insight to improve effective decision making
- Identify, apply and lead appropriate strategies for problem solving and decision making in all workplace contexts. Analyse and review the effectiveness of strategies used in decision making processes
Upon completion of this module, you should be able to:

- Recall and describe the brain regions involved in collaboration
- Identify the cognitive processes that impact on the ability to collaborate
- Understand the brain as a social organ and what this means for collaboration
- Recall and describe the three essential elements for conscious leadership
- Describe the differences between cooperation and collaboration
- Develop and maintain individual processes that enhance collaboration. Understand how to apply practical strategies to improve collaboration and engagement in your team or organisation
- Lead and apply appropriate strategies that create conditions that contribute to effective collaboration in a team context. Analyse and review impact of strategies on effective collaboration in a team context.

6 BIG IDEAS WE EXPLORE:

- Born to collaborate – biological urges to connect and relate
- Foe before friend – finding common ground, why we struggle with those ‘not like us’
- Context sets the scene for engagement
- Challenges to collaboration and engagement
- Building an engaged climate – rules of engagement
- From co-operation to ‘co-labouration’
THE NEUROSCIENCE OF FACILITATING SUSTAINABLE CHANGE

This study period area focuses on the neuroscience of systemic change and the implications for facilitating sustainable change. We will explore the neuroscience of motivation, goal attainment and habit and examine the knowledge and skills required by workplace leaders to understand and implement change in a 'brain-friendly way'. A range of brain-friendly models of change will also be explored.

6 BIG IDEAS WE EXPLORE:

- Why change is hard – the challenges from a cognitive perspective to change
- Neuroplasticity – facilitating ‘self-directed neuroplasticity and other-directed neuroplasticity’
- Neuroscience of habits and how to change them – attention changes the brain
- Neuroscience of goals – why old ways of goal setting are not brain friendly
- Neuroscience of motivation to change – promotion/prevention mindsets
- Brain-friendly change models

Upon completion of this module, you should be able to:

- Understand the neural processes involved in cognitive and behaviour change
- Understand why change is hard and explain the reasons for resistance to change
- Understand the neural processes that support change and contribute to sustainable change
- Recall and describe how attention changes the brain
- Facilitate sustainable change for self and others
- Lead and facilitate change in a team or organisational setting
- Describe the processes that facilitate sustainable change in all workplace contexts
- Select, apply and lead practical strategies that facilitate sustainable change in the workplace
- Analyse and review the impact of strategies used for facilitating systemic change in the workplace