Financing New High Voltage Transmission Lines in Nepal Using HTLS Conductors

Surendra Rajbhandari, Nepal Electricity Authority
Zhang Lei, ADB South Asia Energy Division

Asia Clean Energy Forum June 2015
Overview of Nepal Power System

• Total installed capacity: 782 MW
• Under Construction: 1300 MW
• Transmission Lines: 2640 cct km
• 40 Grid Substations of 2200 MVA
• Average annual growth rate of peak: 10%
• Average annual growth rate of energy: 8.5%
• Access to grid electricity: 65%
• Peak Load in FY 2014/15= 1300 MW
Hydropower Potential and Licensing Status

- Hydropower Potential: Over 83,000 MW
- Storage capacity plants: 21,400 MW
- Survey license issued: 6600 MW
- Government reserved: 5584 MW
- Survey application: 3096 MW
- Projects under construction: 1300 MW
 - NEA and subsidiary companies = 1002 MW
 - IPPs = 297 MW
SASEC Power System Expansion Project

• **Project Cost:** $440 million
 - ADF loan: $180 million
 - EIB: $120 m
 - Norway: $60.0 m
 - ADB SCF: $11.2 m
 - GoN: $60.34 m
• Loan signed: 11 July 2014
• Loan closing: 30 June 2022
Components of SASEC Power System Expansion Project

- **Output 1: Power transmission capacity increased.**
 - Construction of 45 km of 400 kV and 191.5 km of 220 kV transmission lines along Kaligandaki Corridor and Marsyangdi-Kathmandu route;
 - Construction of 125 km of 220 kV TL along Marsyangdi Corridor and 24 km of 132 kV TL along Samundratar-Trishuli route.

- **Output 2: Power distribution network improved**
- **Output 3: Mini-grid based renewable energy systems in off-grid areas increased.**
- **Output 4: Capacity development supports to NEA and AEPC.**
<table>
<thead>
<tr>
<th>Description</th>
<th>Kaligandaki River Basin</th>
<th>Marsyangdi River Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential, MW</td>
<td>2000</td>
<td>2200</td>
</tr>
<tr>
<td>PPA signed, MW</td>
<td>150</td>
<td>119</td>
</tr>
<tr>
<td>Survey license issued, MW</td>
<td>840</td>
<td>652</td>
</tr>
<tr>
<td>IBN Project, MW</td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>
CHALLENGE

- Provide ~ 1500 MW transmission capacity in each of 2 river basins
- Commissioning dates uncertain
- Multiple projects total ~ 150 MW in each river under construction now
- Minimize environmental footprint
Options Considered

- 400 kV line with Quad MOOSE Conductors
- 400 kV line with Twin MOOSE Conductors
- 220 kV with Quad MOOSE Conductors
- 220 kV with Twin HTLS Conductors
- Transfer requirement is 1600 MW.
- RoW acquisition is major problem in Nepal.
- 220 kV with HTLS reduces RoW requirement significantly from 52 m (400 kV) to 35 m.
- Comparison of the options provided 220 kV with twin HTLS as optimum solution.
Why HTLS Conductors?

For reconductoring:
- Enhanced current carrying capacity.
- No modification / reinforcement to existing towers.
- Cost effectiveness.

For new lines:
- Enhanced current carrying capacity.
- Reduction in overall capital expenditure.
- Reduction in overall operating expenditure.
- Low sag tension property
- Shorter project period
Typical Span 350 meter

35 m Total Right of-Way
Manufacturers

- Southwire: ACSS (Aluminum Conductor, Steel Supported)
- 3M: ACCR (Aluminum Conductor, Composite Reinforced)
- J-Power: Gap
- LS Cable: Invar
- CTC: ACCC (Aluminum Conductor, Composite Core)
Gap

Invar

Source: EPRI
ACCC (CTC Carbon fibre)

3M (ACCR)

Source: EPRI
Comparison of Cost and Current Carrying Capacity

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Current capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ACSS</td>
<td>1.8 to 2.0</td>
<td>1.2 - 1.5</td>
</tr>
<tr>
<td>GAP</td>
<td>1.6 to 2.0</td>
<td>2</td>
</tr>
<tr>
<td>INVAR</td>
<td>1.5 to 2.0</td>
<td>3 - 5</td>
</tr>
<tr>
<td>ACCR</td>
<td>2 - 3</td>
<td>5 - 6.5</td>
</tr>
<tr>
<td>ACCC</td>
<td>2</td>
<td>2.5 - 3.0</td>
</tr>
</tbody>
</table>

Source: EPRI
Technical Comparison: Current Carrying Capacity

<table>
<thead>
<tr>
<th>Particulars</th>
<th>ACSR Moose</th>
<th>ACSS (ACSR Moose equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Carrying Capacity (Amperes)</td>
<td>876</td>
<td>1950</td>
</tr>
<tr>
<td>Current Carrying Capacity (Twin)</td>
<td>1752</td>
<td>3900</td>
</tr>
<tr>
<td>Current Carrying Capacity (Quad)</td>
<td>3504</td>
<td>7800</td>
</tr>
<tr>
<td>Same Current Construction</td>
<td>Quad</td>
<td>Twin</td>
</tr>
<tr>
<td>Total Conductor Weight (Per Circuit)</td>
<td>24048</td>
<td>11898</td>
</tr>
<tr>
<td>Savings in Weight (%)</td>
<td>-</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Source: Sterlite
220 kV vs. 400 kV?

Maximum Power Transfer (MW)

- **S/C**
 - 132kV ACSR (Bear)
 - 220kV ACCC (Budapest)

- **S/C Twin**
 - 400kV ACSR (Moose)

- **D/C Twin**
 - 220 kV ACSR (Moose)

- **D/C Triple**
 - 400kV ACSR (Moose)
<table>
<thead>
<tr>
<th>Conductor Type & Code Name</th>
<th>Voltage (kV)</th>
<th>Circuits</th>
<th>Conductors per Phase</th>
<th>Unit Cost ($)</th>
<th>A</th>
<th>MW</th>
<th>A</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSR</td>
<td>220</td>
<td>1</td>
<td>1</td>
<td>0.17</td>
<td>947</td>
<td>343</td>
<td>413</td>
<td>150</td>
</tr>
<tr>
<td>Moose</td>
<td>400</td>
<td>1</td>
<td>1</td>
<td>0.51</td>
<td>947</td>
<td>623</td>
<td>660</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>0.20</td>
<td>1,894</td>
<td>686</td>
<td>634</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0.30</td>
<td>1,894</td>
<td>1,371</td>
<td>1,098</td>
<td>795</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>0.34</td>
<td>2,841</td>
<td>2,057</td>
<td>1,424</td>
<td>1,031</td>
</tr>
<tr>
<td>220 kV vs. 400 kV</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0.80</td>
<td>1,894</td>
<td>2,493</td>
<td>1,670</td>
<td>2,198</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>0.90</td>
<td>2,841</td>
<td>3,740</td>
<td>2,165</td>
<td>2,850</td>
</tr>
<tr>
<td>ACCC</td>
<td>220</td>
<td>1</td>
<td>1</td>
<td>0.23</td>
<td>2,002</td>
<td>725</td>
<td>542</td>
<td>196</td>
</tr>
<tr>
<td>Budapest</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0.27</td>
<td>4,005</td>
<td>1,450</td>
<td>831</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0.40</td>
<td>4,005</td>
<td>2,900</td>
<td>1,391</td>
<td>1,007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>0.45</td>
<td>6,006</td>
<td>4,348</td>
<td>1,858</td>
<td>1,345</td>
</tr>
</tbody>
</table>
Thank you!